Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

5-Bromo-3-(methylaminocarbonyl)pyridinium picrate

B. K. Sarojini,^a B. Narayana,^a M. T. Swamy,^b H. S. Yathirajan^c and Michael Bolte^d*

^aDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, ^bDepartment of Chemistry, Sambhram Institute of Technology, Bangalore 560 098, India, ^cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and ^dInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany

Correspondence e-mail: bolte@chemie.uni-frankfurt.de

Received 24 September 2007; accepted 24 September 2007

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.018 Å; *R* factor = 0.103; w*R* factor = 0.263; data-to-parameter ratio = 12.2.

In the title compound, $C_7H_8BrN_2O^+ \cdot C_6H_2N_3O_7^-$, the cations and anions are connected by N-H···O hydrogen bonds. Whereas two nitro groups are almost coplanar with the aromatic ring of the picrate anion, the third one is significantly twisted [dihedral angle = 41 (2)°]. The ions crystallize in sheets parallel to the (112) plane.

Related literature

For related structures, see: Anitha *et al.* (2005); Freeman & Bugg (1974); Jethmalani *et al.* (1996); Yathirajan *et al.* (2007). For related literature, see: Kagabu *et al.* (1998); Aranda & Morlock (2006).

Experimental

Crystal data

c = 12.842 (2) Å
$\alpha = 93.802 \ (13)^{\circ}$
$\beta = 97.688 \ (13)^{\circ}$
$\gamma = 98.280 \ (12)^{\circ}$
$V = 411.90 (11) \text{ Å}^3$

Z = 1Mo $K\alpha$ radiation $\mu = 2.55 \text{ mm}^{-1}$

Data collection

Stoe IPDSII two-circle
diffractometer
Absorption correction: multi-scan
(MULABS; Spek, 2003; Blessing,
1995)
$T_{\min} = 0.604, \ T_{\max} = 0.643$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.103$ H-

 $wR(F^2) = 0.263$ $\Delta\rho$

 S = 1.15 $\Delta\rho$

 2966 reflections
 Ab

 244 parameters
 $\Delta \rho$

 3 restraints
 Fla

6268 measured reflections 2966 independent reflections 2898 reflections with $I > 2\sigma(I)$ $R_{int} = 0.122$

H-atom parameters constrained $\Delta \rho_{max} = 1.15 \text{ e } \text{ Å}^{-3}$ $\Delta \rho_{min} = -1.30 \text{ e } \text{ Å}^{-3}$ Absolute structure: Flack (1983), with 1416 Friedel pairs Flack parameter: 0.06 (3)

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N1-H1···O1 ⁱ	0.88	2.23	2.865 (13)	129
$N1 - H1 \cdot \cdot \cdot O15^{ii}$	0.88	2.28	2.964 (14)	135
N5−H5···O11	0.88	1.86	2.572 (15)	137
$N5-H5\cdots O12$	0.88	2.15	2.885 (15)	140

Symmetry codes: (i) x + 1, y, z; (ii) x + 2, y, z + 1.

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003) and XP in SHELXTL-Plus (Sheldrick, 1991); software used to prepare material for publication: PLATON.

MTS thanks Sambhram Institute of Technology for research facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2557).

References

- Anitha, K., Athimoolam, S. & Rajaram, R. K. (2005). Acta Cryst. E61, o2556– o2558.
- Aranda, M. & Morlock, G. (2006). J. Chromatogr. A1131, 253-260.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Freeman, G. R. & Bugg, C. E. (1974). Acta Cryst. B30, 431-443.
- Jethmalani, J. M., Camp, A. G., Soman, N. G., Hawley, J. W., Setliff, F. L. & Holt, E. M. (1996). Acta Cryst. C52, 438–441.
- Kagabu, S., Yokoyama, K., Iwaya, K. & Tanaka, M. (1998). Biosci. Biotechnol. Biochem. 62, 1216–1224.
- Sheldrick, G. M. (1991). *SHELXTL-Plus*. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.
- Yathirajan, H. S., Ashok, M. A., Narayana Achar, B. & Bolte, M. (2007). Acta Cryst. E63, o1691–o1692.

T = 173 (2) K

 $0.22 \times 0.20 \times 0.19 \text{ mm}$

supplementary materials

Acta Cryst. (2007). E63, o4181 [doi:10.1107/S1600536807046934]

5-Bromo-3-(methylaminocarbonyl)pyridinium picrate

B. K. Sarojini, B. Narayana, M. T. Swamy, H. S. Yathirajan and M. Bolte

Comment

Nicotinamide, also known as niacinamide, is the amide of niacin (vitamin B3) and used for the treatment of arthritis by aiding the body in its production of cartilage. A different use for this compound is an additive in energy drinks (Aranda & Morlock, 2006). The crystal structures of *N*-(4-bromophenyl)-5,6-dichloronicotinamide and 6-chloro-5-fluoro-*N*-(3-pyridyl)nicotinamide (Jethmalani *et al.*, 1996), the picrate salt of 1-methylnicotinamide (Freeman & Bugg, 1974) and nicotinium picrate (Anitha *et al.*, 2005) have been reported. In continuation of our work on picrate salts (Yathirajan *et al.*, 2007), the paper reports the crystal structure of the title compound, (I).

Compound (I), $[C_7H_8BrN_2O]^+[C_6H_2N_3O_7]^-$, consists of discrete 5-bromo-*N*-methylnicotinamidium cations and picrate anions connected by N—H···O and bifurcated N—H···(O,*O*) hydrogen bonds. Whereas two nitro groups are almost coplanar with the aromatic ring of the picrate anion [dihedral angles 4(2)° and 11 (2)°], the third one is significantly twisted [dihedral angle 41 (2)°]. The non-H atoms of the side chain of the cation are almost coplanar (r.m.s. deviation 0.015 Å) and this plane is inclined by 28.9 (8)° with respect to the heterocycle. The ion pairs crystallize in sheets parallel to the ($\overline{112}$) plane.

Experimental

5-Bromo-*N*-methylnicotinamide (2.15 g, 0.01 mol) was dissolved in 25 ml of 1:1 v/v alcohol-water mixture and few drops of dilute HCl were added and stirred well. To this, picric acid (2.29 g, 0.01 mol) in 30 ml of water was added dropwise and stirred for few minutes. The precipitated salt was filtered, dried and yellow blocks of (I) were obtained by slow evaporation of the ethanol solution. (m. p.: 401–403 K). Analysis for C₁₃H₁₀BrN₅O₈: Found (Calculated): C 35.04 (35.15); H 2.24 (2.27); N 15.71% (15.77%).

Refinement

The H atoms were geometrically placed (C—H = 0.95–0.98 Å, N—H = 0.88 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C,N)$ or $1.5U_{eq}(methyl C)$.

Figures

Fig. 1. Perspective view of (I) displacement ellipsoids for the non-hydrogen atoms are at the 50% probability level. Hydrogen bonds shown as dashed lines.

Fig. 2. Packing diagram of the title compound. Hydrogen bonds shown as dashed lines.

5-Bromo-3-(methylaminocarbonyl)pyridinium picrate

Crystal data	
$C_7H_8BrN_2O^+ \cdot C_6H_2N_3O_7^-$	Z = 1
$M_r = 444.17$	$F_{000} = 222$
Triclinic, P1	$D_{\rm x} = 1.791 { m Mg m}^{-3}$
Hall symbol: P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 4.6684 (7) Å	Cell parameters from 5412 reflections
b = 7.0328 (11) Å	$\theta = 3.5 - 25.7^{\circ}$
c = 12.842 (2) Å	$\mu = 2.55 \text{ mm}^{-1}$
$\alpha = 93.802 \ (13)^{\circ}$	T = 173 (2) K
$\beta = 97.688 \ (13)^{\circ}$	Block, yellow
$\gamma = 98.280 \ (12)^{\circ}$	$0.22\times0.20\times0.19~mm$
$V = 411.90 (11) \text{ Å}^3$	

Data collection

Stoe IPDSII two-circle diffractometer	2966 independent reflections
Radiation source: fine-focus sealed tube	2898 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.122$
T = 173(2) K	$\theta_{\text{max}} = 25.6^{\circ}$
ω scans	$\theta_{\min} = 3.5^{\circ}$
Absorption correction: multi-scan (MULABS; Spek, 2003; Blessing, 1995)	$h = -5 \rightarrow 5$
$T_{\min} = 0.604, \ T_{\max} = 0.643$	$k = -8 \rightarrow 8$
6268 measured reflections	$l = -15 \rightarrow 15$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.103$	$w = 1/[\sigma^2(F_o^2) + (0.2P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.263$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 1.15	$\Delta \rho_{max} = 1.15 \text{ e } \text{\AA}^{-3}$
2966 reflections	$\Delta \rho_{min} = -1.30 \text{ e } \text{\AA}^{-3}$

244 parameters	Extinction correction: ., $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
3 restraints	Extinction coefficient:
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 1416 Friedel pairs
Secondary atom site location: difference Fourier map	Flack parameter: 0.06 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
0.80717 (7)	0.12358 (7)	0.79387 (6)	0.0446 (4)
0.0789 (16)	0.8106 (13)	0.8851 (7)	0.0452 (18)
0.547 (2)	0.8204 (15)	0.9724 (8)	0.040 (2)
0.7077	0.7676	0.9783	0.048*
0.379 (2)	0.5947 (18)	0.8161 (10)	0.041 (2)
0.560 (3)	0.4597 (17)	0.8415 (10)	0.042 (2)
0.6673	0.4644	0.9102	0.050*
0.582 (3)	0.313 (2)	0.7614 (10)	0.050 (3)
0.419 (2)	0.3107 (16)	0.6629 (9)	0.041 (2)
0.4312	0.2147	0.6088	0.050*
0.240 (3)	0.4456 (15)	0.6434 (8)	0.039 (2)
0.1387	0.4418	0.5801	0.047*
0.212 (3)	0.584 (2)	0.7170 (10)	0.040 (2)
0.0800	0.6728	0.7018	0.048*
0.323 (2)	0.7498 (19)	0.8939 (11)	0.038 (2)
0.526 (3)	0.979 (2)	1.0457 (11)	0.056 (3)
0.3871	1.0576	1.0129	0.085*
0.7186	1.0586	1.0651	0.085*
0.4573	0.9299	1.1091	0.085*
-0.484 (3)	0.7005 (19)	0.3974 (11)	0.047 (3)
-0.299 (3)	0.5557 (19)	0.4251 (11)	0.046 (2)
-0.292 (2)	0.4168 (19)	0.3371 (9)	0.045 (2)
-0.469 (2)	0.4101 (18)	0.2417 (8)	0.042 (2)
-0.4666	0.3117	0.1876	0.051*
-0.649 (3)	0.5457 (19)	0.2252 (10)	0.046 (2)
-0.654 (3)	0.6999 (18)	0.3012 (9)	0.042 (2)
-0.7683	0.7986	0.2864	0.051*
	x 0.80717 (7) 0.0789 (16) 0.547 (2) 0.7077 0.379 (2) 0.560 (3) 0.6673 0.582 (3) 0.419 (2) 0.4312 0.240 (3) 0.1387 0.212 (3) 0.0800 0.323 (2) 0.526 (3) 0.3871 0.7186 0.4573 -0.484 (3) -0.299 (3) -0.292 (2) -0.4669 (2) -0.4666 -0.649 (3) -0.7683	x y $0.80717 (7)$ $0.12358 (7)$ $0.0789 (16)$ $0.8106 (13)$ $0.547 (2)$ $0.8204 (15)$ 0.7077 0.7676 $0.379 (2)$ $0.5947 (18)$ $0.560 (3)$ $0.4597 (17)$ 0.6673 0.4644 $0.582 (3)$ $0.313 (2)$ $0.419 (2)$ $0.3107 (16)$ 0.4312 0.2147 $0.240 (3)$ $0.4456 (15)$ 0.1387 0.4418 $0.212 (3)$ $0.584 (2)$ 0.0800 0.6728 $0.323 (2)$ $0.7498 (19)$ $0.526 (3)$ $0.979 (2)$ 0.3871 1.0576 0.7186 1.0586 0.4573 0.9299 $-0.484 (3)$ $0.7005 (19)$ $-0.292 (2)$ $0.4168 (19)$ $-0.469 (2)$ $0.4101 (18)$ -0.4666 0.3117 $-0.649 (3)$ $0.5457 (19)$ $-0.654 (3)$ 0.7986	x y z $0.80717 (7)$ $0.12358 (7)$ $0.79387 (6)$ $0.0789 (16)$ $0.8106 (13)$ $0.8851 (7)$ $0.547 (2)$ $0.8204 (15)$ $0.9724 (8)$ 0.7077 0.7676 0.9783 $0.379 (2)$ $0.5947 (18)$ $0.8161 (10)$ $0.560 (3)$ $0.4597 (17)$ $0.8415 (10)$ 0.6673 0.4644 0.9102 $0.582 (3)$ $0.313 (2)$ $0.7614 (10)$ $0.419 (2)$ $0.3107 (16)$ $0.6629 (9)$ 0.4312 0.2147 0.6088 $0.240 (3)$ $0.4448 (2)$ $0.7170 (10)$ 0.800 0.6728 0.7018 $0.323 (2)$ $0.7498 (19)$ $0.8939 (11)$ $0.526 (3)$ $0.979 (2)$ $1.0457 (11)$ 0.3871 1.0576 1.0129 0.7186 1.0586 1.0651 0.4573 0.9299 1.1091 $-0.484 (3)$ $0.7005 (19)$ $0.3371 (9)$ -0.4666 0.3117 0.1876 $-0.649 (2)$ $0.4101 (18)$ $0.2417 (8)$ -0.6466 0.3117 0.1876 -0.6466 0.3117 0.1876 $-0.654 (3)$ $0.6999 (18)$ $0.3012 (9)$ -0.7683 0.7986 0.2864

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

N11	-0.491 (3)	0.8562 (17)	0.4781 (10)	0.049 (2)
N12	-0.103 (3)	0.2703 (18)	0.3510 (8)	0.051 (2)
N13	-0.839 (3)	0.5355 (19)	0.1231 (10)	0.055 (3)
011	-0.172 (3)	0.553 (2)	0.5176 (8)	0.072 (3)
012	0.081 (2)	0.2845 (16)	0.4273 (8)	0.060(2)
013	-0.115 (2)	0.143 (2)	0.2774 (9)	0.068 (3)
O14	-0.828 (3)	0.416 (2)	0.0549 (10)	0.073 (4)
015	-1.009 (2)	0.660 (2)	0.1133 (10)	0.068 (3)
016	-0.498 (6)	1.018 (3)	0.4500 (17)	0.124 (7)
017	-0.488 (8)	0.822 (3)	0.5712 (18)	0.162 (14)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0394 (5)	0.0423 (5)	0.0511 (6)	0.0075 (3)	0.0010 (3)	0.0043 (3)
01	0.030 (4)	0.049 (4)	0.054 (5)	0.008 (3)	-0.002 (3)	0.002 (4)
N1	0.031 (5)	0.049 (5)	0.038 (5)	0.008 (4)	-0.002 (4)	-0.006 (4)
C1	0.030 (5)	0.045 (6)	0.038 (6)	-0.008 (4)	-0.013 (4)	0.007 (5)
C2	0.040 (5)	0.043 (5)	0.038 (5)	-0.004 (4)	-0.001 (4)	0.006 (4)
C3	0.041 (6)	0.062 (7)	0.041 (6)	-0.011 (5)	-0.001 (5)	0.013 (5)
C4	0.039 (5)	0.041 (5)	0.040 (5)	0.004 (4)	0.001 (4)	-0.008 (4)
N5	0.041 (5)	0.038 (5)	0.034 (5)	0.007 (4)	-0.008 (4)	0.004 (4)
C6	0.040 (6)	0.051 (7)	0.031 (6)	0.015 (5)	-0.002 (5)	0.010 (5)
C7	0.025 (5)	0.041 (6)	0.044 (6)	0.000 (4)	-0.004 (5)	0.007 (5)
C8	0.050 (6)	0.066 (8)	0.049 (7)	0.006 (6)	0.004 (5)	-0.019 (6)
C11	0.045 (6)	0.052 (6)	0.044 (7)	0.011 (5)	-0.002 (5)	0.008 (5)
C12	0.047 (6)	0.051 (6)	0.036 (6)	0.006 (5)	-0.002 (5)	0.002 (5)
C13	0.036 (5)	0.057 (6)	0.038 (5)	0.000 (4)	-0.001 (4)	0.006 (5)
C14	0.040 (5)	0.056 (6)	0.026 (4)	-0.004 (5)	0.002 (4)	0.001 (4)
C15	0.048 (6)	0.048 (6)	0.034 (6)	-0.006 (5)	-0.003 (5)	0.002 (4)
C16	0.049 (6)	0.045 (5)	0.030 (5)	0.004 (4)	-0.003 (5)	0.008 (4)
N11	0.053 (6)	0.044 (6)	0.041 (6)	-0.005 (4)	-0.006 (4)	0.003 (5)
N12	0.053 (6)	0.064 (7)	0.032 (4)	0.008 (5)	0.001 (4)	-0.010 (4)
N13	0.051 (6)	0.066 (8)	0.038 (6)	-0.008 (5)	-0.016 (5)	0.006 (5)
011	0.075 (7)	0.098 (9)	0.038 (5)	0.026 (6)	-0.019 (5)	-0.007 (5)
012	0.063 (6)	0.065 (6)	0.050 (5)	0.020 (5)	-0.003 (4)	0.001 (4)
O13	0.063 (7)	0.079 (7)	0.058 (6)	0.028 (6)	-0.011 (5)	-0.015 (5)
O14	0.090 (9)	0.079 (8)	0.037 (6)	-0.016 (6)	0.000 (6)	-0.008 (6)
015	0.047 (5)	0.098 (9)	0.055 (6)	0.009 (5)	-0.013 (5)	0.030 (6)
O16	0.20 (2)	0.078 (10)	0.115 (13)	0.060 (12)	0.048 (14)	0.026 (9)
O17	0.30 (4)	0.081 (12)	0.080 (13)	-0.013 (17)	0.014 (18)	-0.032 (11)

Geometric parameters (Å, °)

Br1—C3	1.848 (15)	C11—C16	1.373 (17)
O1—C7	1.268 (15)	C11—C12	1.461 (18)
N1—C7	1.363 (15)	C11—N11	1.464 (19)
N1—C8	1.436 (16)	C12—O11	1.257 (17)
N1—H1	0.8800	C12—C13	1.451 (18)

C1—C2	1.386 (18)	C13—C14	1.377 (15)
C1—C6	1.393 (17)	C13—N12	1.455 (18)
C1—C7	1.51 (2)	C14—C15	1.367 (19)
C2—C3	1.430 (19)	C14—H14	0.9500
С2—Н2	0.9500	C15—C16	1.414 (19)
C3—C4	1.385 (16)	C15—N13	1.472 (15)
C4—N5	1.367 (16)	C16—H16	0.9500
С4—Н4	0.9500	N11—O16	1.22 (2)
N5—C6	1.343 (18)	N11—017	1.23 (3)
N5—H5	0.8800	N12—012	1.202 (15)
С6—Н6	0.9500	N12-013	1 246 (16)
C8—H8A	0.9800	N13-014	1 18 (2)
C8—H8B	0.9800	N13-015	1.10(2) 1.265(19)
C8—H8C	0.9800		1.205 (17)
C7 N1 $C9$	121.2 (11)		100.5
C7—NI—C8	121.2 (11)	H8B-C8-H8C	109.5
C/—NI—HI	119.4	C16C11C12	124.6 (12)
C8—NI—HI	119.4	CI6—CII—NII	117.9 (11)
C2—C1—C6	121.3 (14)	C12—C11—N11	117.5 (11)
C2—C1—C7	123.9 (10)	O11—C12—C13	125.6 (13)
C6—C1—C7	114.6 (11)	O11—C12—C11	121.6 (13)
C1—C2—C3	118.2 (11)	C13—C12—C11	112.8 (11)
C1—C2—H2	120.9	C14—C13—C12	123.0 (12)
C3—C2—H2	120.9	C14—C13—N12	117.8 (11)
C4—C3—C2	118.8 (12)	C12—C13—N12	119.1 (10)
C4—C3—Br1	121.6 (10)	C15-C14-C13	119.6 (11)
C2—C3—Br1	119.6 (9)	C15-C14-H14	120.2
N5—C4—C3	120.2 (11)	C13-C14-H14	120.2
N5—C4—H4	119.9	C14—C15—C16	122.6 (11)
C3—C4—H4	119.9	C14—C15—N13	118.9 (12)
C6—N5—C4	122.6 (10)	C16-C15-N13	118.4 (12)
C6—N5—H5	118.7	C11—C16—C15	117.0 (12)
C4—N5—H5	118.7	C11—C16—H16	121.5
N5—C6—C1	118.8 (12)	С15—С16—Н16	121.5
N5—C6—H6	120.6	O16—N11—O17	122.2 (19)
С1—С6—Н6	120.6	O16—N11—C11	117.8 (14)
01—C7—N1	122.7 (13)	017—N11—C11	120.0 (16)
01—C7—C1	120.7 (11)	012—N12—013	120.9 (12)
N1-C7-C1	116.6 (10)	012 - N12 - C13	120.0(11)
N1—C8—H8A	109.5	013 - N12 - C13	1186(10)
N1_C8_H8B	109.5	014—N13—015	122.9 (13)
	109.5	014—N13—C15	122.9(13)
N1 C2 H2C	109.5	015 N13 C15	120.0(14)
	109.5	015-115-015	110.5 (15)
	109.5		- /->
C6—C1—C2—C3	5.0 (16)	011—C12—C13—N12	-/(2)
C'/C1C2C3	176.6 (9)	C11—C12—C13—N12	176.4 (11)
C1—C2—C3—C4	-1.0 (16)	C12—C13—C14—C15	3.9 (18)
C1—C2—C3—Br1	-177.0 (8)	N12—C13—C14—C15	-179.6 (11)
C2—C3—C4—N5	-0.2 (17)	C13-C14-C15-C16	2.7 (19)

supplementary materials

Br1—C3—C4—N5	175.7 (9)	C13-C14-C15-N13	-179.5 (11)
C3—C4—N5—C6	-0.4 (18)	C12-C11-C16-C15	1(2)
C4—N5—C6—C1	2.3 (18)	N11-C11-C16-C15	-178.5 (12)
C2-C1-C6-N5	-3.6 (17)	C14—C15—C16—C11	-5(2)
C7—C1—C6—N5	-177.8 (11)	N13-C15-C16-C11	177.1 (11)
C8—N1—C7—O1	-4.7 (19)	C16-C11-N11-O16	-39 (2)
C8—N1—C7—C1	174.8 (12)	C12-C11-N11-O16	140.9 (19)
C2—C1—C7—O1	-148.3 (11)	C16-C11-N11-O17	141 (2)
C6—C1—C7—O1	25.6 (15)	C12-C11-N11-O17	-39 (3)
C2-C1-C7-N1	32.1 (16)	C14—C13—N12—O12	170.6 (12)
C6—C1—C7—N1	-153.9 (11)	C12-C13-N12-O12	-12.7 (18)
C16-C11-C12-O11	-172.7 (15)	C14—C13—N12—O13	-1.7 (18)
N11-C11-C12-O11	7(2)	C12-C13-N12-O13	174.9 (12)
C16-C11-C12-C13	5(2)	C14-C15-N13-O14	-3(2)
N11-C11-C12-C13	-175.8 (11)	C16-C15-N13-O14	175.1 (14)
O11—C12—C13—C14	170.0 (14)	C14-C15-N13-O15	177.3 (12)
C11—C12—C13—C14	-7.1 (18)	C16-C15-N13-O15	-4.9 (19)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1···O1 ⁱ	0.88	2.23	2.865 (13)	129
N1—H1···O15 ⁱⁱ	0.88	2.28	2.964 (14)	135
N5—H5…O11	0.88	1.86	2.572 (15)	137
N5—H5…O12	0.88	2.15	2.885 (15)	140
$\mathbf{C}_{\mathbf{r}}$				

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) *x*+2, *y*, *z*+1.

